Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.745
Filtrar
1.
Hum Brain Mapp ; 45(5): e26675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590155

RESUMO

Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy. 70 de novo PD patients, 70 iRBD patients, and 60 HCs underwent 3 T MRI. T1 and susceptibility-weighted images were acquired and processed to space standardized QSM. Voxel-based analyses of grey matter magnetic susceptibility differences comparing all groups were performed on the whole brain and upper brainstem levels with the statistical threshold set at family-wise error-corrected p-values <.05. Whole-brain analysis showed increased susceptibility in the bilateral fronto-parietal cortex of iRBD patients compared to both PD and HC. This was not associated with cortical thinning according to the cortical thickness analysis. Compared to iRBD, PD patients had increased susceptibility in the left amygdala and hippocampal region. Upper brainstem analysis revealed increased susceptibility within the bilateral SN for both PD and iRBD compared to HC; changes were located predominantly in nigrosome 1 in the former and nigrosome 2 in the latter group. In the iRBD group, abnormal dopamine transporter SPECT was associated with increased susceptibility in nigrosome 1. iRBD patients display greater fronto-parietal cortex involvement than incidental early-stage PD cohort indicating more widespread subclinical neuropathology. Dopaminergic degeneration in the substantia nigra is paralleled by susceptibility increase, mainly in nigrosome 1.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Sinucleinopatias/complicações , Sinucleinopatias/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Doença de Parkinson/complicações , Ferro
2.
Acta Neuropathol ; 147(1): 54, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472443

RESUMO

Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (ß: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Doença de Alzheimer/patologia , Substância Negra/patologia , Emaranhados Neurofibrilares/patologia
3.
Dev Psychobiol ; 66(2): e22469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351305

RESUMO

Autism spectrum disorder (ASD) is characterized by deficits in social interaction and communication and repetitive and restricted behaviors. Sex dimorphism in the brain, including midbrain dopaminergic circuits, can explain differences in social behavior impairment and stereotypic behaviors between male and female individuals with ASD. These abnormal patterns may be due to alterations in dopamine synthesis in the ventral tegmental area (VTA) and substantia nigra (SN). We used an autism-like mouse model by prenatal valproic acid (VPA) exposure. CD1 pregnant female mice were injected with 500 mg/kg VPA or 0.9% NaCl as a vehicle on gestational day 12.5. In the offspring, on postnatal day 31, we examined the social and repetitive behaviors and the number of tyrosine hydroxylase (TH)-positive cells in VTA and SN by sex. Male VPA mice showed impaired social behavior and increased repetitive behaviors when compared to male vehicles. In females, we did not find statistically significant differences in social or repetitive behaviors between the groups. Male VPA mice had fewer TH+ cells in the SN than control-vehicle mice. Interestingly, no cellular changes were observed between females. This study supports the notion that sex dimorphism of certain brain regions is involved in the etiopathogenesis and clinical presentation of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Feminino , Masculino , Animais , Humanos , Ácido Valproico/farmacologia , Caracteres Sexuais , Neurônios Dopaminérgicos/patologia , Comportamento Social , Substância Negra/patologia , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/patologia , Comportamento Animal/fisiologia
4.
J Neurochem ; 168(2): 128-141, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38178798

RESUMO

Abnormal metal distribution in vulnerable brain regions is involved in the pathogenesis of most neurodegenerative diseases, suggesting common molecular mechanisms of metal dyshomeostasis. This study aimed to compare the intra- and extra-neuronal metal content and the expression of proteins related to metal homeostasis in the substantia nigra (SN) from patients with Parkinson's disease (PD), multiple sclerosis (MS), and control subjects. Metal quantification was performed via ion-beam micro-analysis in neuromelanin-positive neurons and the surrounding tissue. For proteomic analysis, SN tissue lysates were analyzed on a nanoflow chromatography system hyphenated to a hybrid triple-quadrupole time-of-flight mass spectrometer. We found increased amounts of iron in neuromelanin-positive neurons and surrounding tissue in patients with PD and MS compared to controls (4- to 5-fold higher) that, however, also showed large inter-individual variations. Copper content was systematically lower (-2.4-fold) in neuromelanin-positive neurons of PD patients compared with controls, whereas it remained unchanged in MS. Protein-protein interaction (PPI) network analyses revealed clusters related to Fe and Cu homeostasis among PD-deregulated proteins. An enrichment for the term "metal homeostasis" was observed for MS-deregulated proteins. Important deregulated hub proteins included hemopexin and transferrin in PD, and calreticulin and ferredoxin reductase in MS. Our findings show that PD and MS share commonalities in terms of iron accumulation in the SN. Concomitant proteomics experiments revealed PPI networks related to metal homeostasis, substantiating the results of metal quantification.


Assuntos
Esclerose Múltipla , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Proteômica , Esclerose Múltipla/metabolismo , Substância Negra/patologia , Metais/metabolismo , Ferro/metabolismo , Melaninas/análise , Melaninas/metabolismo
5.
Biol Sex Differ ; 15(1): 8, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243325

RESUMO

BACKGROUND: Lewy body dementia (LBD) phenotype is associated with the presence and degree of Lewy body, Alzheimer's pathologies, and substantia nigra neuron loss. Nigral neuron loss is associated with parkinsonism in LBD, and females with LBD are less likely than males to have parkinsonism. As sex differences were reported for clinical correlates of Lewy body and Alzheimer's pathologies, we aimed to investigate whether there are also sex differences for correlates of nigral neuron loss. METHODS: Data were obtained from the National Alzheimer's Coordinating Center for females (n = 159) and males (n = 263) with brainstem, limbic, and neocortical Lewy body pathology. Sex differences for the nigral neuron loss' association with Lewy body pathology staging and core clinical LBD features (cognitive fluctuations, visual hallucinations, rapid eye movement sleep behavior disorder, parkinsonism) during follow-up were analyzed with generalized linear models adjusting for age and Alzheimer's pathology staging. Whether any of the core clinical features at the time of dementia onset can predict underlying nigral neuron loss for females and males were also analyzed with generalized linear models. RESULTS: Compared to males, females died older and had higher levels of Braak tau staging, but had similar levels of Lewy body pathology staging and nigral neuron loss. Females were less likely than males to have a clinical Lewy body disease diagnosis during follow-up. More advanced Lewy body pathology staging was associated with more nigral neuron loss, more so for males than females. More nigral neuron loss was associated with parkinsonism and clinical LBD diagnosis during follow-up, more so for males than females. Across the subgroup with dementia (40 females, 58 males), core LBD features at first visit with dementia were not associated with nigral neuron loss. CONCLUSIONS: Nigral neuron loss' association with Lewy body pathology staging and core LBD features can differ by sex. Compared to males, females with Lewy body pathology have a higher risk of underdiagnosis. There is a need to elucidate the mechanisms underlying sex differences for pathology and clinicopathological correlations to advance diagnostic and therapeutic efforts in LBD.


Lewy body dementia (LBD) is the third most common dementia associated with Lewy body pathology, Alzheimer's pathology, and substantia nigra loss. It is often less recognized in females compared to males, because the typical symptoms are less evident in females. In this study, we investigated whether substantia nigra neuron loss plays a role in the atypical presentation of LBD in females, contributing to the underdiagnosis compared to males. We analyzed data from 159 females and 263 males with pathological Lewy body disease obtained from the National Alzheimer's Coordinating Center. Females tended to be older at the time of death and had more tau buildup, but similar levels of Lewy body pathology and substantia nigra neuron loss compared to males. When we compared males and females of similar age with similar levels of Alzheimer's pathology, we observed that females had less substantia nigra neuron loss at less advanced Lewy body pathology stages. Greater nigral neuron loss was associated with parkinsonism and the typical LBD symptoms in males, but not as strongly in females. The extent of nigral loss could not be predicted based on the clinical features at the time of dementia diagnosis. Thus, the relationship between nigral neuron loss and the LBD symptoms seems to vary by sex. Females with underlying Lewy body disease are more likely to be underdiagnosed compared to males. We need further work to understand why these sex differences exist and how we can better identify and treat LBD.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Masculino , Feminino , Corpos de Lewy/patologia , Doença de Alzheimer/patologia , Caracteres Sexuais , Doença por Corpos de Lewy/complicações , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/psicologia , Substância Negra/patologia , Neurônios
6.
Mov Disord ; 39(3): 546-559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38173297

RESUMO

BACKGROUND: Dementia is common in Parkinson's disease (PD), but there is wide variation in its timing. A critical gap in PD research is the lack of quantifiable markers of progression, and methods to identify early stages of dementia. Atrophy-based magnetic resonance imaging (MRI) has limited sensitivity in detecting or tracking changes relating to PD dementia, but quantitative susceptibility mapping (QSM), sensitive to brain tissue iron, shows potential for these purposes. OBJECTIVE: The objective of the paper is to study, for the first time, the longitudinal relationship between cognition and QSM in PD in detail. METHODS: We present a longitudinal study of clinical severity in PD using QSM, including 59 PD patients (without dementia at study onset), and 22 controls over 3 years. RESULTS: In PD, increased baseline susceptibility in the right temporal cortex, nucleus basalis of Meynert, and putamen was associated with greater cognitive severity after 3 years; and increased baseline susceptibility in basal ganglia, substantia nigra, red nucleus, insular cortex, and dentate nucleus was associated with greater motor severity after 3 years. Increased follow-up susceptibility in these regions was associated with increased follow-up cognitive and motor severity, with further involvement of hippocampus relating to cognitive severity. However, there were no consistent increases in susceptibility over 3 years. CONCLUSIONS: Our study suggests that QSM may predict changes in cognitive severity many months prior to overt cognitive involvement in PD. However, we did not find robust longitudinal changes in QSM over the course of the study. Additional tissue metrics may be required together with QSM for it to monitor progression in clinical practice and therapeutic trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Estudos Longitudinais , Gânglios da Base/patologia , Substância Negra/patologia , Imageamento por Ressonância Magnética/métodos
7.
Biomed Pharmacother ; 171: 116123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211424

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by dopaminergic neuron death in the substantia nigra, leading to motor dysfunction. Autophagy dysregulation has been implicated in PD pathogenesis. This study explores the role of miR-214-3p in PD, focusing on its impact on autophagy and dopaminergic neuron viability. Using in vitro and in vivo models, we demonstrate that miR-214-3p inhibits autophagy and promotes dopaminergic neuron apoptosis. Behavioral assessments and molecular analyses reveal exacerbation of PD symptoms upon miR-214-3p overexpression. Furthermore, mechanistic investigations identify ATG3 as a target, shedding light on miR-214-3p's regulatory role in autophagy. These findings enhance our understanding of PD pathogenesis and propose miR-214-3p as a potential biomarker and therapeutic target for modulating autophagy and neuronal survival in PD.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , Animais , Camundongos , Doença de Parkinson/patologia , Substância Negra/patologia , Apoptose , Autofagia , Neurônios Dopaminérgicos/patologia , Camundongos Endogâmicos C57BL
8.
Mol Neurodegener ; 19(1): 7, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245794

RESUMO

Parkinson's Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD is loss of dopaminergic neurons and the presence of aggregated α-synuclein, primarily in the substantia nigra pars compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post-mortem SNpc obtained from 15 sporadic Parkinson's Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, representing all major cell types of the brain, allowing us to obtain a transcriptome-level characterization of these cell types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopulations identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 & SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations and cell type-specific gene sets.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Mesencéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Substância Negra/patologia
9.
Int J Biochem Cell Biol ; 168: 106528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246261

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that progresses over time and is characterized by preferential reduction of dopaminergic neurons in the substantia nigra. Although the precise mechanisms leading to cell death in neurodegenerative disorders, such as PD, are not fully understood, it is widely accepted that increased oxidative stress may be a prevalent factor contributing to the deterioration of the nigrostriatal dopaminergic fibers in such conditions. Aminochrome, generated from dopamine (DA) metabolism, plays an important role in multiple pathogenic mechanisms associated with PD. Its capacity to induce a gradual reduction in dopaminergic neurons is due to its endogenous neurotoxicity. The formation of aminochrome results in the production of various reactive oxygen species (ROS), including pro-inflammatory factors, superoxide, nitric oxide, and hydroxyl radicals. This, in turn, causes loss of dopaminergic neurons, reducing DA uptake, and reduced numbers and shortened dendrites. Notably, o-quinones, which are more cytotoxic, arise from the oxidation of DA and possess a higher capacity to impede cellular defense mechanisms, thereby resulting in the death of neuronal cells. Aminochrome potentially contributes to the pathophysiology of PD by forming adducts with various proteins. All of the aforementioned effects suggest that aminochrome may play a crucial role in the pathophysiology of PD. Thus, aminochrome may serve as a more relevant preclinical model for PD, facilitating a better understanding of its pathophysiological processes and identification of novel therapeutic strategies aimed at preventing or slowing disease progression.


Assuntos
Indolquinonas , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Indolquinonas/metabolismo , Indolquinonas/uso terapêutico , Doenças Neurodegenerativas/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia
10.
Exp Neurol ; 374: 114684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199508

RESUMO

Parkinson's disease, a progressive neurodegenerative disorder, involves gradual degeneration of the nigrostriatal dopaminergic pathway, leading to neuronal loss within the substantia nigra pars compacta and dopamine depletion. Molecular factors, including neuroinflammation, impaired protein homeostasis, and mitochondrial dysfunction, contribute to the neuronal loss. Deep brain stimulation, a form of neuromodulation, applies electric current through stereotactically implanted electrodes, effectively managing motor symptoms in advanced Parkinson's disease patients. Deep brain stimulation exerts intricate effects on neuronal systems, encompassing alterations in neurotransmitter dynamics, microenvironment restoration, neurogenesis, synaptogenesis, and neuroprotection. Contrary to initial concerns, deep brain stimulation demonstrates antiinflammatory effects, influencing cytokine release, glial activation, and neuronal survival. This review investigates the intricacies of deep brain stimulation mechanisms, including insertional effects, histological changes, and glial responses, and sheds light on the complex interplay between electrodes, stimulation, and the brain. This exploration delves into understanding the role of neuroinflammatory pathways and the effects of deep brain stimulation in the context of Parkinson's disease, providing insights into its neuroprotective capabilities.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doenças Neuroinflamatórias , Dopamina/metabolismo , Encéfalo/metabolismo , Substância Negra/patologia
11.
Eur J Neurol ; 31(2): e16111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903090

RESUMO

BACKGROUND AND PURPOSE: Cerebral infarction in the basal ganglia may cause secondary and delayed neuronal degeneration in the substantia nigra (SN). However, the clinical significance of SN degeneration remains poorly understood. METHODS: This retrospective observational study included patients with acute ischemic stroke in the basal ganglia on initial diffusion-weighted imaging who underwent follow-up diffusion-weighted imaging between 4 and 30 days after symptom onset. SN degeneration was defined as a hyperintensity lesion in the SN observed on diffusion-weighted imaging. We compared functional outcomes at 3 months between patients with and without SN degeneration. A poor outcome was defined as a score of 3-6 (functional dependence or death) on the modified Rankin Scale. RESULTS: Of 350 patients with basal ganglia infarction (median age = 74.0 years, 53.7% male), 125 (35.7%) had SN degeneration. The proportion of functional dependence or death was 79.2% (99/125 patients) in patients with SN degeneration, which was significantly higher than that in those without SN degeneration (56.4%, 127/225 patients, p < 0.001). SN degeneration was more frequent in patients with functional dependence or death (99/226 patients, 43.8%) than in those with functional independence (26/124 patients, 21.0%, p < 0.001). Multivariable logistic regression analysis showed a significant association between SN degeneration and functional dependence or death (odds ratio = 2.91, 95% confidence interval = 1.17-7.21, p = 0.021). CONCLUSIONS: The study showed that patients with degeneration of SN were associated with functional dependence or death at 3 months, suggesting that secondary degeneration is a predictor of poor stroke outcomes and a potential therapeutic target.


Assuntos
AVC Isquêmico , Idoso , Feminino , Humanos , Masculino , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/patologia , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/patologia , Imagem de Difusão por Ressonância Magnética , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Estudos Retrospectivos
12.
Eur J Neurol ; 31(2): e16145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975799

RESUMO

BACKGROUND AND PURPOSE: The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS: A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS: Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS: Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/patologia , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/patologia , Expansão das Repetições de Trinucleotídeos
13.
Neurol Res ; 46(3): 220-226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953510

RESUMO

OBJECTIVES: Nigrostriatal dopaminergic neuron loss is essential in pathogenesis of Parkinson's disease (PD). The purpose of this study was to evaluate nigrostriatal structures including the putamen, cerebral peduncle, widths of interpeduncular cistern, and ambient cistern around the midbrain with conventional cranial magnetic resonance images (MRI) in patients with PD. METHODS: The MRI of 56 subjects was included, which was selected from the radiological data system for this retrospective study. The 29 patients with idiopathic PD were included and their disease duration, Hoehn&Yahr stage, and Levodopa equivalent dose (LED) were recorded. The 27 controls had a normal neurologic examination and cranial MRI. All subjects in the patient and control groups had right-hand dominance. Putamen and cerebral peduncle areas and widths of interpeduncular and ambient cisterns were measured in T2 sequences of MRI. Further statistical analysis was applied to exclude gender and age effect on areas. RESULTS: The areas of putamen and cerebral peduncles were significantly reduced in patients with PD compared to the control bilaterally (p < 0.001). Enlargement of interpeduncular and ambient cisterns in patients was higher than in controls, and it was significant (p < 0.001). A correlation was not observed between measurement results and clinical characteristics of patients with PD. Only the cerebral peduncle area/ambient cistern width ratio was significantly correlated with disease duration positively (right r = 0.46 p = 0.012, left r = 0.389 p = 0.037). CONCLUSION: Clinicians should be careful with conventional MRIs of patients with idiopathic PD in practice. It may be different from controls without any neurological disorder, particularly putamen, cerebral peduncles, interpeduncular, and ambient cisterns.


The areas of putamen and cerebral peduncles were significantly reduced in patients with PDEnlargement of interpeduncular and right ambient cisterns were detected in patients with PDCerebral peduncle area/ambient cistern width ratio was significantly correlated with disease duration positivelyMRIs of patients with idiopathic PD may be different from controls without any neurological disorder, particularly putamen, cerebral peduncles, interpeduncular, and ambient cisterns.


Assuntos
Pedúnculo Cerebral , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Putamen/diagnóstico por imagem , Putamen/patologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Pedúnculo Cerebral/patologia , Substância Negra/patologia
14.
Acta Pharmacol Sin ; 45(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37674042

RESUMO

Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (ß-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 µM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.


Assuntos
Doença de Parkinson , Ratos , Camundongos , Animais , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ferro/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Dopamina/metabolismo , Senescência Celular , Modelos Animais de Doenças
15.
Acta Pharmacol Sin ; 45(1): 52-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37674043

RESUMO

Gut microbiota disturbance and systemic inflammation have been implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD). How the alteration of gut microbiota results in neuropathological events in PD remains elusive. In this study, we explored whether and how environmental insults caused early neuropathological events in the substantia nigra (SN) of a PD mouse model. Aged (12-month-old) mice were orally administered rotenone (6.25 mg·kg-1·d-1) 5 days per week for 2 months. We demonstrated that oral administration of rotenone to ageing mice was sufficient to establish a PD mouse model and that microglial activation and iron deposition selectively appeared in the SN of the mice prior to loss of motor coordination and dopaminergic neurons, and these events could be fully blocked by microglial elimination with a PLX5622-formulated diet. 16 S rDNA sequencing analysis showed that the gut microbiota in rotenone-treated mice was altered, and mice receiving faecal microbial transplantation (FMT) from ageing mice treated with rotenone for 2 months exhibited the same pathology in the SN. We demonstrated that C-X-C motif chemokine ligand-1 (CXCL1) was an essential molecule, as intravenous injection of CXCL1 mimicked almost all the pathology in serum and SN induced by oral rotenone and FMT. Using metabolomics and transcriptomics analyses, we identified the PPAR pathway as a key pathway involved in rotenone-induced neuronal damage. Inhibition of the PPARγ pathway was consistent in the above models, whereas its activation by linoleic acid (60 mg·kg-1·d-1, i.g. for 1 week) could block these pathological events in mice intravenously injected with CXCL1. Altogether, these results reveal that the altered gut microbiota resulted in neuroinflammation and iron deposition occurring early in the SN of ageing mice with oral administration of rotenone, much earlier than motor symptoms and dopaminergic neuron loss. We found that CXCL1 plays a crucial role in this process, possibly via PPARγ signalling inhibition. This study may pave the way for understanding the "brain-gut-microbiota" molecular regulatory networks in PD pathogenesis. The aged C57BL/6 male mice with rotenone intragastric administration showed altered gut microbiota, which caused systemic inflammation, PPARγ signalling inhibition and neuroinflammation, brain iron deposition and ferroptosis, and eventually dopaminergic neurodegeneration in PD.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Masculino , Rotenona/toxicidade , Doenças Neuroinflamatórias , PPAR gama , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia , Substância Negra/patologia , Neurônios Dopaminérgicos/patologia , Inflamação/patologia , Ferro , Modelos Animais de Doenças
16.
Parkinsonism Relat Disord ; 118: 105957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101025

RESUMO

INTRODUCTION: Fyn kinase is an Src family kinase (SFK) widely expressed in many tissues, including the CNS. Recently, Fyn kinase activation has been associated with pathological mechanisms underlying neurodegenerative diseases and, as such, the role of Fyn dysfunction is under investigation. In particular, Fyn is implicated as a major upstream regulator of neuroinflammation in Parkinson's Disease (PD). Chronic neuroinflammation has been observed not just in the substantia nigra (SN), but also in several key regions of the brain, with disruption associated with symptoms presentation in PD. This study aimed to characterise the anatomical distribution of Fyn in key brain regions affected in PD, namely the prefrontal cortex, hippocampus, striatum and SN. METHODS: Fresh and fixed post-mortem PD brain samples (n = 10) were collected and compared with neurologically healthy age-matched controls (n = 7) to assess markers of Fyn activity and neuroinflammation. RESULTS: Increased Fyn phosphorylation was observed in SN and striatum of post-mortem samples from PD patients compared with controls. No such increase was observed in the prefrontal cortex or hippocampus. In contrast with previous findings, no increase in microglial activation or astrocyte reactivity was observed in PD brains across regions. CONCLUSION: Taken together, these results indicate that Fyn dysfunction may be involved in the pathological processes observed in PD; however, this appears to be independent of inflammatory mechanisms. Further investigations are required to elucidate if increased Fyn activity is a potential cause or consequence of pathological processing in PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doenças Neuroinflamatórias , Encéfalo/patologia , Substância Negra/patologia , Fosforilação
17.
Genes (Basel) ; 14(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137024

RESUMO

Studying the molecular mechanisms of the pathogenesis of Parkinson's disease (PD) is critical to improve PD treatment. We used OpenArray technology to assess gene expression in the substantia nigra (SN) cells of mice in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD and in controls. Among the 11 housekeeping genes tested, Rps27a was taken as the reference gene due to its most stable expression in normal and experimental conditions. From 101 genes encoding functionally significant proteins of nigrostriatal dopaminergic neurons, 57 highly expressed genes were selected to assess their expressions in the PD model and in the controls. The expressions of Th, Ddc, Maoa, Comt, Slc6a3, Slc18a2, Drd2, and Nr4a2 decreased in the experiment compared to the control, indicating decreases in the synthesis, degradation, and transport of dopamine and the impaired autoregulation of dopaminergic neurons. The expressions of Tubb3, Map2, Syn1, Syt1, Rab7, Sod1, Cib1, Gpx1, Psmd4, Ubb, Usp47, and Ctsb genes were also decreased in the MPTP-treated mice, indicating impairments of axonal and vesicular transport and abnormal functioning of the antioxidant and ubiquitin-proteasome systems in the SN. The detected decreases in the expressions of Snca, Nsf, Dnm1l, and Keap1 may serve to reduce pathological protein aggregation, increase dopamine release in the striatum, prevent mitophagy, and restore the redox status of SN cells.


Assuntos
Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Dopamina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Modelos Animais de Doenças , Fator 2 Relacionado a NF-E2/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Proteínas de Ligação a RNA/metabolismo
18.
Mol Neurodegener ; 18(1): 91, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012703

RESUMO

BACKGROUND: Alpha-synuclein (α-syn) aggregation into proteinaceous intraneuronal inclusions, called Lewy bodies (LBs), is the neuropathological hallmark of Parkinson's disease (PD) and related synucleinopathies. However, the exact role of α-syn inclusions in PD pathogenesis remains elusive. This lack of knowledge is mainly due to the absence of optimal α-syn-based animal models that recapitulate the different stages of neurodegeneration. METHODS: Here we describe a novel approach for a systemic delivery of viral particles carrying human α-syn allowing for a large-scale overexpression of this protein in the mouse brain. This approach is based on the use of a new generation of adeno-associated virus (AAV), AAV-PHP.eB, with an increased capacity to cross the blood-brain barrier, thus offering a viable tool for a non-invasive and large-scale gene delivery in the central nervous system. RESULTS: Using this model, we report that widespread overexpression of human α-syn induced selective degeneration of dopaminergic (DA) neurons, an exacerbated neuroinflammatory response in the substantia nigra and a progressive manifestation of PD-like motor impairments. Interestingly, biochemical analysis revealed the presence of insoluble α-syn oligomers in the midbrain. Together, our data demonstrate that a single non-invasive systemic delivery of viral particles overexpressing α-syn prompted selective and progressive neuropathology resembling the early stages of PD. CONCLUSIONS: Our new in vivo model represents a valuable tool to study the role of α-syn in PD pathogenesis and in the selective vulnerability of nigral DA neurons; and offers the opportunity to test new strategies targeting α-syn toxicity for the development of disease-modifying therapies for PD and related disorders.


Assuntos
Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Roedores/metabolismo , Encéfalo/metabolismo , Corpos de Lewy/metabolismo , Substância Negra/patologia , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças
19.
Neurol Sci ; 44(11): 4099-4102, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526798

RESUMO

INTRODUCTION: Secondary neurodegeneration after stroke is a complex phenomenon affecting remote and synaptically linked cerebral areas. The involvement of the substantia nigra in this process has been rarely described in infarcts involving the striatum. METHODS: We are presenting a case of ischemic stroke involving the right striatum due to atrial fibrillation and associated in a few days with the neuroimaging finding of hyperintensity of the ipsilateral substantia nigra and striatonigral tract on T2-fluid attenuated inversion recovery and diffusion-weighted imaging sequences of brain magnetic resonance imaging. This finding was not related to clinical manifestations and substantially disappeared within 3 months from stroke onset. DISCUSSION: The pathophysiology of secondary degeneration of the substantia nigra is poorly understood and it relies on animal models and autoptic studies. The main putative mechanism is not ischemic but excitotoxic with a different role of the internal and external globus pallidus and a different effect on the pars compacta and pars reticularis of the substantia nigra. In animal models, inflammatory mechanisms seem play a role only in the late phase. The main studies on humans were presented in detail. CONCLUSIONS: A better understanding of the secondary degeneration of the substantia nigra has the potentiality to offer a chance for neuroprotection in acute stroke, but further studies are needed.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Corpo Estriado/patologia , AVC Isquêmico/patologia , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Substância Negra/diagnóstico por imagem , Substância Negra/patologia
20.
Eur Radiol ; 33(12): 9109-9119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37438642

RESUMO

OBJECTIVES: Using diffusion basis spectrum imaging (DBSI) to examine the microstructural changes in the substantia nigra (SN) and global white matter (WM) tracts of patients with early-stage PD. METHODS: Thirty-seven age- and sex-matched patients with early-stage PD and 22 healthy controls (HCs) were enrolled in this study. All participants underwent clinical assessments and diffusion-weighted MRI scans, analyzed by diffusion tensor imaging (DTI) and DBSI to assess the pathologies of PD in SN and global WM tracts. RESULTS: The lower DTI fraction anisotropy (FA) was seen in SN of PD patients (PD: 0.316 ± 0.034 vs HCs: 0.331 ± 0.019, p = 0.015). The putative cells marker-DBSI-restricted fraction (PD: 0.132 ± 0.051 vs HCs: 0.105 ± 0.039, p = 0.031) and the edema/extracellular space marker-DBSI non-restricted-fraction (PD: 0.150 ± 0.052 vs HCs: 0.122 ± 0.052, p = 0.020) were both significantly higher and the density of axons/dendrites marker-DBSI fiber-fraction (PD: 0.718 ± 0.073 vs HCs: 0.773 ± 0.071, p = 0.003) was significantly lower in SN of PD patients. DBSI-restricted fraction in SN was negatively correlated with HAMA scores (r = - 0.501, p = 0.005), whereas DTI-FA was not correlated with any clinical scales. In WM tracts, only higher DTI axial diffusivity (AD) among DTI metrics was found in multiple WM regions in PD, while lower DBSI fiber-fraction and higher DBSI non-restricted-fraction were detected in multiple WM regions. DBSI non-restricted-fraction in both left fornix (cres)/stria terminalis (r = -0.472, p = 0.004) and right posterior thalamic radiation (r = - 0.467, p = 0.005) was negatively correlated with MMSE scores. CONCLUSION: DBSI could potentially detect and quantify the extent of inflammatory cell infiltration, fiber/dendrite loss, and edema in both SN and WM tracts in patients with early-stage PD, a finding remains to be further investigated through more extensive longitudinal DBSI analysis. CLINICAL RELEVANCE STATEMENT: Our study shows that DBSI indexes can potentially detect early-stage PD's pathological changes, with a notable ability to distinguish between inflammation and edema. This implies that DBSI has the potential to be an imaging biomarker for early PD diagnosis. KEY POINTS: • Diffusion basis spectrum imaging detected higher restricted-fraction in Parkinson's disease, potentially reflecting inflammatory cell infiltration. • Diffusion basis spectrum imaging detected higher non-restricted-fraction and lower fiber-fraction in Parkinson's disease, indicating the presence of edema and/or dopaminergic neuronal/dendritic loss. • Diffusion basis spectrum imaging metrics correlated with non-motor symptoms, suggesting its potential diagnostic role to detect early-stage PD dysfunctions.


Assuntos
Doença de Parkinson , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Substância Branca/patologia , Doença de Parkinson/patologia , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Edema/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...